ИДЗ 13.3 – Вариант 21. Решения Рябушко А.П.
Всего продано 1
Возвратов 0
Хороших отзывов 0
Плохих отзывов 0
1. Вычислить массу неоднородной пластины D, ограниченной заданными линиями, если поверхностная плотность в каждой ее точке μ= μ(x, y)
1.21. D: y = x2, y = 2, μ = 2 – y
2. Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты.
2.21. D: x2 + y2 + 2ay = 0, x + y ≤ 0, x ≥ 0, Ox
3. Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную указанными поверхностями.
3.21. V: y = x2 + z2, x2 + z2 = 10, y = 0
4. Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1.
4.21. V: z = 2(x2 + y2), z = 2, Oz
1.21. D: y = x2, y = 2, μ = 2 – y
2. Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты.
2.21. D: x2 + y2 + 2ay = 0, x + y ≤ 0, x ≥ 0, Ox
3. Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную указанными поверхностями.
3.21. V: y = x2 + z2, x2 + z2 = 10, y = 0
4. Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1.
4.21. V: z = 2(x2 + y2), z = 2, Oz
Подробное решение. Оформлено в Microsoft Word 2003 (Задание решено с использованием редактора формул)
Для удобства просмотра решений ИДЗ на смартфонах, высылается дополнительно файл в PDF-формате
Для удобства просмотра решений ИДЗ на смартфонах, высылается дополнительно файл в PDF-формате